л. в. киренский

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЭНЕРГЕТИЧЕСКОЙ КОНСТАНТЫ МАГНИТНОЙ АНИЗОТРОПИИ НИКЕЛЯ

(Представлено академиком С. И. Вавиловым 12 XI 1948)

Согласно современным воззрениям (1), величина свободной энергии недеформированного ферромагнитного кристалла кубической системы описывается следующим соотношением:

$$U = U_0 + K(s_1^2 s_2^2 + s_2^2 s_3^2 + s_1^2 s_3^2), \tag{1}$$

где U — величина свободной энергии кристалла, K — константа анизотропии, s_1 , s_2 , s_3 — направляющие косинусы углов вектора спонтанного намагничения с тетрагональными осями кристалла, U_0 — аддитивная постоянная.

Исследованию величины константы анизотропии для различных ферромагнетиков, а также ее температурному изменению посвящен

ряд теоретических и экспериментальных работ.

Так, предпринятые с различных точек зрения теоретические исследования Н. С. Акулова (1) и Ван-Флека (2) для кристаллов кубической системы, а также исследования С. В. Вонсовского (3) для кобальта показали, что с повышением температуры константа анизотропии должна убывать по своей абсолютной величине.

Что касается экспериментальных исследований, то начало было положено работами Хонда и его сотрудников (4, 5), снимавших кривые намагничения на монокристаллах по основным кристаллографическим направлениям. По этим кривым намагничения оказывается возможным

вычислить величину константы анизотропии.

Согласно этим данным, приведенным, например, в статье Ван-Флека, константа анизотропии никеля быстро возрастает с понижением температуры, не стремясь к насыщению, а при температуре 420° К меняет знак, но в интервале температур от 480° К и почти до точки Кюри остается неизменной, равной $+10^{4}$ эрг/см³.

Исследованиями Н. Л. Брюхатова и автора (6) для константы анизо-

тропии никеля была установлена экспериментальная формула

$$K = K_0 e^{-aT^2}, \tag{2}$$

где K — константа анизотропии при данной температуре, K_0 — константа анизотропии при абсолютном нуле, равная — $80 \cdot 10^4$ эрг/см³, T — абсолютная температура, a — некоторая постоянная, равная $3.4 \cdot 10^{-6}$ 1/град².

Однако данные, полученные на основании обработки кривых намагничения, снятых Хонда, Мазумото и Ширакава, вызывают серьезные сомнения, так как в области низких температур явно не было достигнуто насыщения, а в области высоких температур не замечено стремления константы анизотропии к нулю при приближении к точке Кюри.

Действительно, опыты Вильямса и Бозорта (7), предпринятые с целью проверки соотношения (2), полностью его подтвердили в

области очень низких температур.

Нами было предпринято экспериментальное исследование энергетической константы анизотролии никеля в интервале температур от —183° С до точки Кюри. Исследование проводилось методом автоматической записи величины механических моментов, приложенных к образцу, вырезанному в форме диска и помещенному в сильное однородное магнитное поле. Величина энергии монокристаллического диска при его вращении в магнитном поле около полярной оси, очевидно, может быть описана выражением:

$$U = U_0 + Kf(\varphi), \tag{3}$$

где U — энергия кристалла при заданной ориентации, ϕ — угол между направлением вектора спонтанного намагничения и некоторой осью, лежащей в плоскости диска и соответствующей экстремальному значению энергии кристалла в данной плоскости, U_0 — аддитивная постоянная.

Величина механического момента, приложенного к образцу, очевидно, будет:

$$M = \frac{dU}{d\varphi} = K \frac{df(\varphi)}{d\varphi}. \tag{4}$$

Так как при данной ориентации образца, независимо от его температуры, $f(\varphi)$ неизменно, то изменение с температурой величины механического момента будет соответствовать изменению с температурой константы анизотропии.

Кроме, того, так как выражение (4) справедливо для любой ориентации кристалла, то, очевидно, оно применимо при исследовании температурной зависимости K и для поликристаллического образца с текстурой

и лишенного внутренних напряжений.

Такой образец и был использован в нашей работе. Напряженность поля составила 5400 эрстед, что обеспечивало насыщение

образца.

Результаты исследований получались в виде магнитограмм, на которых автоматически записывался механический момент либо в функции угла между некоторой полярной осью и вектором поля, либо в функции поля или температуры при неизменной ориентации образца.

На рис. 1 представлена магнитограмма, где по оси абсцисс или, что то же, по "нулевой" линии, соответствующей магнитограмме в отсутствие поля, отложено время, в течение которого происходило нагревание исследуемого образца.

В виде непрерывной кривой записан механический момент, приложенный к образцу. Ординаты даны при температурах — 150° , — 100° С и т. д. через каждые 50° . Последняя ордината дана при 400° , т. е.

выше точки Кюри.

Площадка, параллельная "нулевой" линии, играющей роль оси абсцисс, соответствует температуре —183°С и имеет, естественно,

максимальную ординату.

Если по данным магнитограммы построить график зависимости $\log K$ от T^2 , то, как это видно из рис. 2, зависимость оказывается линейной, что и приводит к уравнению (2). При температурах более высоких уравнение (2) перестает быть справедливым. В частности,

при температуре около 130°C, как это следует из приведенной выше магнитограммы, константа анизотропии меняет свой знак.

Обработка магнитограммы рис. 1 приводит к данным, изображенным на рис. 3. Как видно из рис. 3, в области невысоких температур данные, полученные методом автоматической фотозаписи при совмеще-

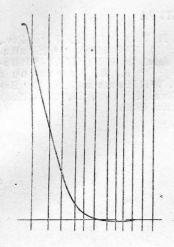


Рис. 1. Магнитограмма изменения механического момента с температурой

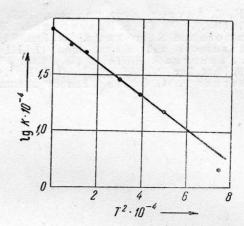


Рис. 2. Зависимость $\log (K \cdot 10^{-4})$ от $T^2 \cdot 10^{-4}$. Данные при T = 0 получены экстраполяцией

нии данных для температуры -183° C, вполне соответствуют данным, полученным в свое время H. Л. Брюхатовым и автором, а также Вильямсом и Бозортом.

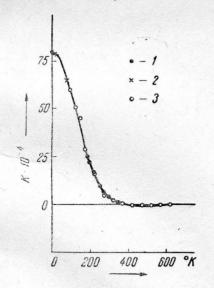


Рис. 3. Температурная зависимость энергетической константы магнитной анизотропии никеля. 1- по (6), 2- по (7), 3- данные автора

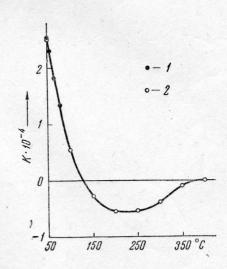


Рис. 4. Температурная зависимость энергетической константы магнитной анизотропии никеля. I — по $(^6)$, 2 — данные автора

Было проведено более тщательное исследование в области высоких температур, от 50°C до точки Кюри, при повышенной чувствительности установки. Обработка магнитограммы приводит к данным, представленным на рис. 4.

Как видно из рис. 4, изменение знака не вызывает сомнений. Точно так же видна хорошая повторяемость данных опыта с прежними данными Н. Л. Брюхатова и автора.

Красноярский государственный педагогический институт

Поступило 29 IX 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. С. Акулов, Ферромагнетизм, 1939. ² J. H. Van Vleck, Phys. Rev., 52, 1178 (1937). ³ С. В. Вонсовский, ЖЭТФ, 10, 1104 (1938). ⁴ Honda, Masumoto and Shirakawa, Sci. Rep. Tôhoku Univ., 24, 391 (1935). ⁵ Honda, Masumoto and Kaya, ibid., 17, 111 (1928). ⁶ H. Л. Брюхатов и Л. В. Киренский, ЖЭТФ, 6, 198 (1938). ⁷ H. J. Williams and R. M. Bozorth, Phys. Rev., 56, 837 (1939). ⁸ H. Polley, Ann. d. Phys., 36, 625 (1939). ⁹ R. Becker u. W. Döring, Ferromagnetismus, Berlin, 1939.