УДК 538.24

ФИЗИКА

Академик Л. В. КИРЕНСКИЙ, Н. М. САЛАНСКИЙ, И. А. ЛЯПУНОВ

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС В ТОНКИХ МАГНИТНЫХ ПЛЕНКАХ Со 59

Наблюдался я.м.р. в тонких пленках ферромагнитного Co59 толщиной 8.103 Å для плоских образцов и толщиной 5.104 Å для цилиндрических образцов на частоте 213,2 Мгц при 300° К. Уменьшение амплитуды сигнала в приложенном постоянном поле, параллельном границам, показывает. что основные потери образца определяются наличием границ. Ориентируя определенным образом ось легкого намагничивания, высокочастотного (в.ч.) и постоянного полей, можно отделить резонанс доменов от резонанса границ.

Введение. Я.м.р. был исследован для большого числа ферромагнитных материалов со времени его открытия в Со⁵⁹ (1). Я.м.р. изучался на многодоменных и однодоменных образцах (2) с массой порядка нескольких грамм. Для проведения экспериментов по я.м.р. на тонких пленках, которые массу $0.1 \div 0.01$ г, требуются спектрометры с большей чувствитель-Повышения чувствительности спектрометра можно добиться, используя сверхрегенеративные детекторы. Для наблюдения ядерного магнитного резонанса Со59 на внутренних полях детектор должен непрерывно перестраиваться в дианазоне $200 \div 250$ Мгц и иметь частотную модуляцию с малым уровнем паразитной

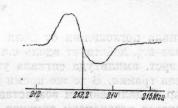


Рис. 1. Форма сигнала поглощения $\Delta f = 0.8$ Мгц

амплитудной модуляции (а.м.). Результирующий а.м. сигнал, содержащий информацию о линиях поглощения я.м.р., усиливается узкополосным усилителем, синхронно детектируется и подается на ленточный самописец.

Эксперимент и интерпретация. Кобальтовые металлические пленки формировались путем вакуумного испарения на плоские и цилиндрические стеклянные подложки. Цилиндрические подложки имели размеры D=2 см, l=3 см, толщина пленки $d=5\cdot 10^4$ Å, легкая ось по окружности. В.ч. поле h_1 в контуре совпадает с направлением оси легкого намагничивания (о.л.н.). Плоские подложки имели размеры 1×2 см, толщина пленок $d\approx 8\cdot 10^3$ Å. Для увеличения массы образца пленки объединялись в пакет, т. е. получался «аналог» слойных пленок. Время напыления пленок $40 \div 60$ мин. Коэрцитивная сила всех пленок в пределах $28 \div 30$ эрст. В нулевом постоянном поле H_0 имеется резонанс на частоте 213,2 Мгп.

Типичная форма резонансной линии приведена на рис. 1. Половина ширины линии равна 0,8 Мгц. Отношение сигнал — шум для пакета с суммарной толщиной металла до 5 · 104 Å около 10.

Приложение внешнего магнитного поля уменьшает амплитуду сигнала, как показано на рис. 2. Различный ход приведенных кривых связан со спецификой изменения резонанса границ и резонанса доменов под воздействием внешнего поля. Кривая 1 показывает зависимость амплитуды сигнала поглощения при возрастании постоянного магнитного поля вдоль о.л.н. (на рис. 3 изображено расположение полей и о.л.н.). В этом случае рост 180° доменов будет происходить за счет смещения границ до тех пор, пока домены, ориентированные невыгодным образом в отношении поля, не будут полностью поглощены. Этим самым уничтожатся границы, и пленка окажется намагниченной в направлении о.л.н., что соответствует исчезновению сигнала я.м.р., обусловленного ядрами, находящимися в границах. На кривой 2 для цилиндрической пленки показана зависимость

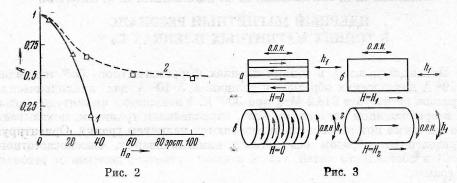


Рис. 2. Зависимость амплитуды сигнала поглощения от величины постоянного поля H_0 . 1 — плоские пленки $H_1 \parallel H_0 \parallel$ о.л.н.; 2 — цилиндрическая пленка $h_1 \perp H$, $H \parallel$ о.л.н.

Рис. 3. Расположение полей и о.л.н. a и b — плоская пленка; b и b — цилиндрическая пленка

сигнала поглощения от поля H_0 действующего перпендикулярно о.л.н. (поле в.ч. действует вдоль о.л.н.). При увеличении поля H_0 примерно до 60 эрст. амплитуда сигнала уменьшается в соответствии с уменьшением числа границ. В то же время резонанс доменов дает свой вклад в сигнал я.м.р. С дальнейшим возрастанием поля H_0 поглощение в основном определяется резонансом доменов, намагниченность которых становится перпендикулярной к направлению в.ч. поля, и амплитуда сигнала изменяется незначительно. В работе (2) однодоменным и многодоменным частицам соответствовали различные частоты резонанса вследствие того, что сферические однодоменные частицы имеют размагничивающее поле 4 /3 $\pi \hat{M}$, которое увеличивает эффективное поле на ядрах. В плоскости пленок размагничивающее поле равно 0 и частоты резонансов границ и доменов совпадают.

Институт физики Сибирского отделения Академии наук СССР Поступило

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. M. Portis, J. Appl. Phys., 31, 5, 2055 (1960). ² A. C. Gossard, A. M. Portis, M. Rubinstein, Phys. Rev., 138, 5A, 1415 (1965). ³ Koi Yoshitaka, Akira Tsuyimura, J. Phys. Soc. Japan, 15, 2100 (1960). ⁴ Я. С. Шур, В. В. Сериков, ФММ, 2, 298 (1966).